#' Converts messy names and ID's to tidy clean ones.
#'
#' For sorting out a vector with long and complicated identifiers or row names, where the true ID of a row is hidden in a string.\cr
#' E.g: Make "dirty" ID's like "A0006_3911_BT-F1_GTCGTCTA_run20190930N" turn into "clean" ID's like 3991_BT
#' @param vector A vector of "dirty" IDs
#' @param identifier ID's need to be formated with a number and following identifier, e.g "34_individuals2019" where "_individuals2019" is the identifier. Any entries not matching this format will be removed.
#' @param identifier_left Wether the identifier is on the left hand (T) or right-hand (R) side of the number
#' @param numLength if you want leading zeroes, use this parameter to specify the length of the number, e.g "8" for 00000342
#' @param prefix if you want a prefix in the new cleaned ID. Ex: "individuals2019_" will give you "individuals2019_0034". If not specified, the old identifier will be used instead. Set to NA if you only want the number.
#' @param na_remove if you want to remove any entries that don't follow your pattern (otherwise, they'll turn to NA)
#' @export
clean_ID = function(vector,identifier="", identifier_left=F, numLength=4, prefix, na_remove=F,numeric=F) {
require(tidyverse)
require(stringr)
# SET THE REGULAR EXPRESSION
if (!identifier_left) regExpr = paste("[0-9]{1,50}",identifier,sep="")
else regExpr = paste(identifier,"[0-9]{1,50}",sep="")
# Extract the ID's from the dirty ID's
ID_dirty = vector
ID_clean = ID_dirty %>% str_extract(regExpr)
# Remove the old identifier (for now)
ID_clean = ID_clean %>% sub(identifier,"",.)
# Remove NA values
if (na_remove) ID_clean = ID_clean[!is.na(ID_clean)]
# Add leading zeroes
if (numLength!=0) ID_clean[!is.na(ID_clean)] = ID_clean[!is.na(ID_clean)] %>% as.numeric() %>% sprintf(paste("%0",numLength,"d",sep=""),.)
# Make the ID completely numeric
if (numeric) ID_clean = as.numeric(ID_clean)
# Add the new prefix
if (exists("prefix")){
if (is.na(prefix)) return(ID_clean)
else ID_clean[!is.na(ID_clean)] = paste(prefix, ID_clean[!is.na(ID_clean)], sep="")
}
else if (identifier_left) ID_clean[!is.na(ID_clean)] = paste(ID_clean[!is.na(ID_clean)], identifier, sep="")
else if (!identifier_left) ID_clean[!is.na(ID_clean)] = paste(identifier, ID_clean[!is.na(ID_clean)], sep="")
return(ID_clean)
}
#' In a dataframe, converts messy names and ID's to tidy clean ones.
#'
#' For sorting out column with long and complicated identifiers or row names, where the true ID of a row is hidden in a string.\cr
#' E.g: Make "dirty" ID's like "A0006_3911_BT-F1_GTCGTCTA_run20190930N" turn into "clean" ID's like 3991_BT
#' @param df The data frame
#' @param column The name of a column containing dirty IDs
#' @param identifier ID's need to be formated with a number and following identifier, e.g "34_individuals2019" where "_individuals2019" is the identifier. Any entries not matching this format will be removed.
#' @param identifier_left Wether the identifier is on the left hand (T) or right-hand (R) side of the number
#' @param numLength if you want leading zeroes, use this parameter to specify the length of the number, e.g "8" for 00000342
#' @param prefix if you want a prefix in the new cleaned ID. Ex: "individuals2019_" will give you "individuals2019_0034"
#' @param na_remove if you want to remove any rows that don't follow your pattern (otherwise, they'll turn to NA). Default is True.
#' @export
clean_ID_df = function(df, column_name, identifier="", identifier_left=F, numLength=F, prefix, na_remove=T, keep_name=F, numeric=F){
require(tidyverse)
require(stringr)
# Ectract the dirty ID's
ID_dirty = unlist(df[column_name])
# Clean the ID
ID_clean = clean_ID(ID_dirty, identifier, identifier_left, numLength, prefix,numeric=numeric)
# Insert the cleaned ID's into the column
df[column_name] = ID_clean
# Remove NA values
if (na_remove) df = df %>% remoNA(column_name)
# Rename the old ID column
# Check what name to use
if (keep_name == F) column_name_new = "ID"
else if (keep_name == T) column_name_new = column_name
else column_name_new = keep_name
# Rename the column to "ID"
df = df %>% rename(!! column_name_new := !! column_name)
return(df)
}
#' Converting sdy to F or M
#'
#' Used on dataframes, for determining sex based on SDY in a given column
#' @export
#'
determineSex = function(dataframe, column, cutoff) {
dataframe = dataframe %>% group_by(ID, SEQRUN) %>% mutate(
sex = SDY_to_sex(dataframe %>% select(matches(column)) %>% filter(dataframe$ID==ID) , cutoff)
)
# %>% select(-c(column))
return(dataframe )
}
#' Set sex to NA if many SNPs missing.
#'
#' In a dataframe, sets sex to "NA" when a certain amount of SNP's are missing as NA
#' @export
#'
unSexBad = function(dataframe, column, sensitivity=0.35) {
sex = unlist(dataframe[column])
colNum = length(names(dataframe))
na_prop <- apply(dataframe, 1, function(x) sum(is.na(x))/length(x))
sex[na_prop > sensitivity] = "?"
dataframe$sex = sex
return(dataframe)
}
#' Rename genotypes based on a lookup table
#'
#' In a dataframe, rename genotype columns
#' @export
renameGenotypes = function(dataframe, LUT, not_genotypes=c()) {
for (i in names(dataframe %>% select(-c(not_genotypes)))) {
dataframe <- dataframe %>% renameGenotype(i, LUT)
}
dataframe
}
#' determinesex2
#' @keywords internal
determineSex2 = function(dataframe, column, cutoff) {
dataframe = dataframe %>% group_by(ID) %>% mutate(
sex = SDY_to_sex(dataframe %>% select(matches(column)) %>% filter(dataframe$ID==ID) , cutoff)
)
# %>% select(-c(column))
return(dataframe )
}
#' SDY_to_sex
#' @keywords internal
SDY_to_sex = function(vector, cutoff) {
sdy = mean(unlist(vector[1]), na.rm=T)
if (is.na(sdy)) return(NA)
else if (sdy <= cutoff) return("F")
else return("M")
}
#' safeMerge
#' @keywords internal
safeMerge = function(vector){
# Get the datatype of the vector
type = typeof(vector)
#1 remove NA values
vector = vector[!is.na(vector)]
#check if the remaning entries are equal
#if they are, return one of them
#if they're not, return NA
if (length(unique(vector)) == 1) return(unique(vector))
else return(convertType(NA,type))
}
#' renameGenotype
#' @keywords internal
renameGenotype = function(dataframe, column, LUT=c("1"="1 1","2"="1 2","3"="2 2")){
genotype = dataframe[column] %>% unlist()
col = LUT[genotype]
col[is.na(col)] = "* *"
dataframe[column] = col
return(dataframe)
}
#' Cecks if certain columns exist in a dataset and returns an error message if not
#' @keywords internal
check_columns = function(dataset,columns,preMessage="Missing columns:"){
message = c(preMessage)
for (i in columns) {
if(!i %in% colnames(dataset))
{
message = c(message,paste("Column",i,"is missing."))
}
if(length(message)>1) error(message)
}
}
#' Converts anything to a number
#' @export
numextract <- function(string){
require(stringr)
as.numeric(str_extract(string, "\\-*\\d+\\.*\\d*"))
}
#' Removes rows with NA in a given column
#'
#' Removes NA rows (in a given column) from a dataset
#' @export
remoNA = function(dataset,column){
return(dataset[which(!is.na(dataset[column])),])
}
#' Replace NA values with unique new identifier
#'
#' Changes all NA values to an unique identifier
#' @export
uniNA = function(values){
uniques = cumsum(is.na(values))
for (i in 1:length(values)){
if (is.na(values[i])) {
values[i]=paste("NA-",uniques[i],sep="")
}
}
return(values)
}
#' Changes NA values in a dataframe to a given value
#' @export
changeNA = function(dataset,value){
dataset[is.na(dataset)] = value
return(dataset)
}
#' Changes certain values in a list/vector to NA
#' @export
makeNA = function(values, which){
for (i in which){
values[values==i] = NA
}
return(values)
}
#' Converts a variabe from one type to another
#' @export
convertType = function(var,type){ #https://stackoverflow.com/questions/47410679/change-type-of-object-based-on-typeof-another-object
unlist(lapply(var,paste0('as.',type)))
}
unSelect = function(df,...){
return(df %>% select(-c(...)))
}
#' For looking up variables from one dataset and then add them to another one.
#'
#' Use to add a column (value) to a dataset (samples), from another dataset (lookup), based on an identifier that exists in both (id_lookup)
#' @param df_samples samples to look up
#' @param df_lookup dataframe to look up against
#' @param id_column common column between the two sets containing unique identifiers for rows
#' @param value the value that is looked up and added to df_samples
#' @example fishies <- fishies %>% lookup(df_birthdays, "fish_ID", "date_birth")
#' @export
lookup = function(df_samples, df_lookup, id_column, value_column,default=NA,overwrite=T){
message("Looking up ",value_column," using ",id_column,"...")
#check if the df_samples already has a column with /value/
#if not, create one and fill it with NA
if(!value_column %in% colnames(df_samples)){
df_samples[[value_column]] = default
}
# for each row,
# 1. get all matching rows (r_match)
# 2. remove all rows containing NA values
# 3. select the first of these rows, and use the value from that one
# 4. if the value is NA, use the value already present
# 5. if there already is a value in the row that's being looked up, only overwrite if overwrite==T
values = apply(df_samples, MARGIN=1, FUN=function(x){
s_id = x[[id_column]]
r_match = df_lookup %>%
filter(!!sym(id_column)==s_id) %>%
remoNA(id_column)
# check if this item was found (and is not NA) (and the original is empty or overwrite==T)
if (nrow(r_match)!=0 & !is.na(r_match[[value_column]][1]) & (is.na(x[[value_column]][1]) | overwrite==T)){
r_match[[value_column]][1] %>% unlist()
}
else{
#if not, use the value already present
x[[value_column]][1] %>% unlist()
}
})
message(typeof(values))
df_samples[[value_column]] = values
message("Done!")
df_samples
}
#' Applies a function on the column of a dataframe and then returns that dataframe
#'
#' @param df A dataframe
#' @param column The name of the column (string) that we want apply the function to
#' @param fun The function we use on the column
#' @example dataframe2 <- dataframe1 %>% manipulate("lengths",convertInches)
#' @export
manipulate = function(df, column, fun){
df[[column]] = fun(df[[column]])
return(df)
}
#' perform
#' @keywords internal
perform = function(df, column, fun){
return(fun(df[[column]]))
}
#' Selects random rows from a dataframe
#'
#' Takes a dataframe and a number n
#' Returns return n randomly selected rows from the dataframe (as a dataframe)
#' @export
selRandom = function(df, n) {
rows = round(runif(n,0,nrow(df)))
selection = df[rows,]
return(selection)
}
snps_clean_freqNA = function(df) {
message(glue("dataframe starting at {ncol(df)} columns."))
nas = df %>% colnames() %>% sapply(function(x){
sum(is.na(df[x]))
})
message("See historgram...")
hist(nas, breaks=ncol(df))
filter_at = numextract(readline(prompt="Enter cutoff value: "))
df = df %>% select_if(~sum(is.na(.)) < filter_at)
message(paste("Columns cut off at",filter_at,"NA-s.",sep=" "))
message(glue("Dataframe is now at {ncol(df)} columns."))
message(glue("Removing mono-something columns"))
df = Filter(function(x){ length(unique(x))!=1 }, df)
message(glue("Dataframe is now at {ncol(df)} columns."))
message("Done")
return(df)
}
snps_clean_mono <- function(tb, p_max=0){
# check over every single column:
# find the proportion of the most frequent type
# if the most frequent type is more frequent than p_max, it is considered monoallelic. Remove it.
message(glue::glue("Dataframe starting at {ncol(tb)} columns."))
cols_to_keep <- apply(tb, MARGIN=2, FUN=function(x){
p_most_frequent <- max(table(x)/length(x))
if (p_most_frequent > p_max) return(F) else return(T)
})
message(cols_to_keep)
message(glue::glue("Removing {sum(!cols_to_keep)} columns."))
tb <- tb[cols_to_keep]
message(glue::glue("Output dataframe at {ncol(tb)} columns."))
return(tb)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.